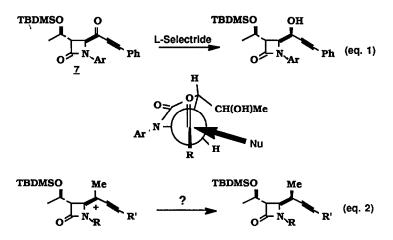

ACYCLIC STEREOCHEMICAL CONTROL USING HEXACARBONYLDICOBALT STABILIZED PROPARGYL CATIONS. A HIGHLY STEREOSELECTIVE ROUTE TO 1β-METHYLCARBAPENEM PRECURSORS.

J. Siva Prasad and Lanny S. Liebeskind*1 Department of Chemistry, Emory University Atlanta, Georgia 30322

Abstract: A highly stereoselective route to precursors of 1 β -methylcarbapenems is described. Hydride reduction of a hexacarbonyldicobalt stabilized propargyl cation derived from a 4-acyl-2-azetidinone prepared using the Weinreb ketone synthesis proceeds with complete stereochemical control to a 1 β -methylcarbapenem precursor bearing an alkynyl unit. The alkyne is readily elaborated to (3S,4R)-3-[(1R)-1-t-butyldimethylsilyloxyethyl]-4-[(1R)-1-methyl-3-methoxycarbonyl-2-oxopropyl]-2-azetidin-2-one or hydrogenated and oxidatively cleaved to (3S,4S)-3-[(1R)-1-t-butyldimethylsilyloxyethyl]-4-[(1R)-1-carboxyethyl]-azetidin-2-one.

Carbapenems such as thienamycin 1 have attracted much attention in recent years because of their broad spectrum antibacterial properties.² The wide spread utility of these potent antibiotics has been hindered by both their chemical instability and their metabolic sensitivity to renal dehydropeptidase-I, but recent disclosures by Merck have demonstrated that the introduction of a β -methyl substituent at the C-1 position of the carbapenem nucleus provides an equally potent antibiotic 2 with substantially increased chemical and metabolic stability.³ To date, the stereoselective introduction of the 1 β -methyl substituent has been accomplished via total synthesis using an aldol-like condensation on the available azetidinone acetate 3⁴, by hydride reduction of an olefinic precursor,⁵ by stereoselective methylation of an enolate,⁶ or from intermediates already containing the desired methyl group.⁷ We wish to report a completely novel approach to 1 β -methylcarbapenem precursors through the use of a highly stereoselective reduction of a hexacarbonyldicobalt stabilized propargyl cation prepared from the starting material 4.⁸

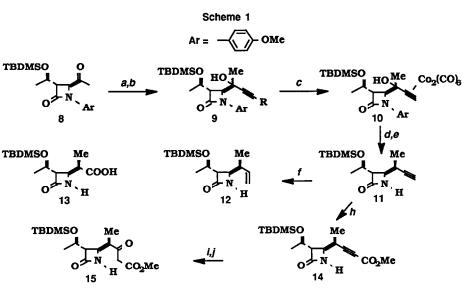

We have discovered that the carboxylic acid group of 4, through the use of the N-methylhydroxamic acid O-methyl ether derivative 5 (Weinreb ketone synthesis),9 provides a useful handle for elaborating 4 into a variety of functionalized 4-acylated monocyclic β -lactams 6 (Table 1). During an investigation of the reaction chemistry of some of the β -lactam ketones, a highly stereoselective reduction of 7 with L-Selectride at -78°C was observed to give only one alcohol in 90% yield (eq. 1). Felkin-Ahn¹⁰ rationalization of nucleophilic attack on the chiral ketone suggested that the observed stereoisomer might be formed by hydride attack from the α -face providing the β -OH isomer of the product. While use of the Felkin-Ahn rule with a methyl substituted carbocation as a carbonyl equivalent might be an overextension of the model, we considered the hypothetical reduction shown in eq. 2 as a means for preparing a product bearing the desired β -methyl stereochemistry. A hexacarbonyldicobalt stabilized propargyl cation derived from 8 in Table 1 allowed this hypothesis to be probed (Scheme 1).

$\begin{array}{c} TBDMSO & O \\ N \\ O \\ S \\ Ar \\ S \\ S \\ Ar \\ Ar \\ Ar \\ Ar \\ $					
Entry	Nu ⁻	Nu ⁻ equiv	т℃	Product, 6, $Nu = 2$	Yield ³
1	LiAlH4	1.1	-70°	H ⁴	80%
2 3	MeMgBr	2.0	0°	Me (8)	99%
	PhC=CLi	2.0	-10°	C≡CPh (7)	93%
4	TMSC≡CLi	2.0	-20°	C≡CTMS	75%
5	MeOCH ₂ C≡CLi	2.0	5°	C=CCH ₂ OMe	78%
6	CH ₂ =CHMgBr	2.5	50°	$CH=CH_2$	45%
7	CH ₂ =CHCH ₂ MgBr ⁵	2.0	0°	$CH_2CH=CH_2$	99%
8	CH2=CHCH2MgBr6	2.0	0°	E-CH=CHCH3	99%
9	PhSCH(OMe)Li	1.0	-10°	CH(OMe)SPh	83%
10	PhCH ₂ MgCl	2.0	50°	CH ₂ Ph	47%
11		1.0	0°	-s > s	62%
12	[[№] →s~ ^{Li}	2.0	-50°	<u>~</u> s→ ^N s]	52%

Table 1. Synthesis of β -Lactam Ketones and an Aldehyde via the Weinreb Ketone Synthesis,¹

¹ A THF solution of 5 was added to the nucleophile in THF under Ar at the indicated reaction temperature. ² All new compounds gave satisfactory spectral and analytical data. ³ Yield refers to pure products isolated by flash column chromatography on SiO₂ unless otherwise noted. ⁴ This unstable aldehyde has been mentioned in Hart, D. J., Ha, D.-C. Tetrahedron Lett., 1985, 5493. ⁵ The β , γ -unsaturated reaction product was obtained by quenching the reaction mixture with NH₄Cl, extracting with EtOAc, and then rapidly chromatographing the crude product on neutral alumina. ⁶ The α superimeted reaction product was obtained by taking the crude reaction product from entry 7 and

⁶ The α,β -unsaturated reaction product was obtained by taking the crude reaction product from entry 7 and exposing it to basic Al₂O₃ until ¹H NMR monitoring showed the isomerization to be complete.



Treatment of acetylenic ketone 8 with TMSC=CLi at 0°C in THF gave a 50:50 mixture of epimeric alcohols 9 (R = TMS) in 73% yield. Desilylation to 9 (R = H) was accomplished in 90% yield with AgNO₃ / KCN.¹¹ Complexation of the alkyne functionality to a Co₂(CO)₆ unit to give 10 was effected by reaction with 1.5 eq. Co₂(CO)₈ at rt in pet ether (68%). Reduction of the complexed propargyl alcohol (OH-+H, 69%) was achieved using the Maryanoff modification (BH₃•SMe₂/TFA)¹² of the Nicholas reaction.¹³ After simultaneous deprotection of the β -lactam nitrogen and decomplexation of the alkyne from the Co₂(CO)₆ fragment using ceric ammonium nitrate, high field ¹H NMR analysis of the alkyne product 11 (50%) showed the presence of only one of the two possible isomeric products. Confirmation of the β -methyl stereochemistry was arrived at by Lindlar reduction (100%) of 11 to the the previously known alkene 12¹⁴ which was oxidatively cleaved (70%) to the carboxylic acid 13, a molecule of demonstrated utility in the synthesis of 1 β -methylcarbapenems.^{3a,c,4,5}

The acetylenic β -lactam 11 was also transformed into a ketoester, a functionality of potential value in the synthesis of 1 β -methylcarbapenems. The alkyne 11 was readily carbomethoxylated (10% PdCl₂, 2 eq. CuCl₂, 1 atm CO, 2 eq. NaOAc, MeOH) to the acetylenic ester 14 in 66% yield.¹⁵ Following a procedure used in the thienamycin series,¹⁶ ester 14 was treated with thiophenoxide, then N-bromoacetamide followed by a reductive workup to provide the ketoester 15 in 60% yield with complete retention of the β -methyl stereochemistry. The ketoester existed as a mixture of keto and enol tautomers (3 : 1 ratio verified by IR, ¹H NMR and ¹³C NMR).

We have shown that hexacarbonyldicobalt stabilized propargyl cations have unique potential in the control of stereochemistry in complex natural products.¹⁷ Together with the Weinreb ketone synthesis, the Nicholas reaction has provided us with a unique and simple entry to precursors of 1β -methylcarbapenems.

Acknowledgements: We thank Bristol-Myers Company for support of this research. We are particularily indebted to Dr. Robert Morin of Bristol-Myers for many helpful discussions.

(a) LiC=CTMS, THF, 0°C, 73%; (b) AgNO₃, KCN, 90%; (c) Co₂(CO)₈, pet. ether, rt, 68%; (d) TFA / BH₃·Me₂S, 69%; (e) (NH4)2Cc(NO3)6, 50%; (f) H2, Pd / BaSO4, quinoline, 100%; (g) RuCl3, NaIO4, 70%; (h) PdCl2, CuCl2, NaOAc, CO, MeOH, 66%; (i) PhSH, Et₃N, THF, 100%; (j) NBA, dioxane-H₂O then Na₂SO₃, 60%

References and Notes

- Fellow of the Alfred P. Sloan Foundation, 1983 1987; Camille and Henry Dreyfus Teacher Scholar, 1986 -1. 1991.
- a. Ratcliffe, R. W.; Albers-Schonberg, G. "The Chemistry of Thienamycin and Other Carbapenem 2. Antibiotics", in "Chemistry and Biology of β -Lactam Antibiotics", Vol. 2, Morin, R. B.; Gorman, M, Eds.; Academic Press: New York, 1982, p. 227. b. Kametani, T.; Fukumoto, K.; Ihara, M. Heterocycles, 1982, 17, 463.
- a. Shih, D. H.; Baker, F.; Carna, L.; Christensen, B. G. Heterocycles, 1984, 21, 29. b. Shih, D. H.; 3. Fayter, J. A.; Cama, L. D.; Christensen, B. G.; Hirshfield, J. Tetrahedron Lett., 1985, 26, 583. c. Shih, D. H.; Cama, L.; Christensen, B. G. Tetrahedron Lett.; 1985, 26, 587.
- a. Fuentes, L. M.; Shinkai, I.; Salzmann, T. N. J. Am. Chem. Soc., 1986, 108, 4675. b. Nagoa, Y.; Kumagai, T.; Tamai, S.; Abe, T.; Kuramoto, Y.; Taga, Y.; Aoyagi, S.; Nagase, Y.; Ochiai, M.; Inoue, Y.; 4. Fujita, E. J. Am. Chem. Soc., 1986, 108, 4673. c. Dàziel, R.; Favreau, D. Tetrahedron Lett., 1986, 27, 5687. d. Shibata, T.; Iino, K.; Tanaka, T.; Hashimoto, T. Tetrahedron Lett., 1985, 26, 4739. e. Chiba, T.; Nagatsuma, M.; Nakai, T. Chemistry Lett., 1985, 1343.
- 5. Iimori, T.; Shibasaki, M. Tetrahedron Lett., 1986, 27, 2149.
- 6. See reference 3a.
- a. Reference 3b. b. Brown, P.; Southgate, R. Tetrahedron Lett., 1986, 27, 247. 7.
- We thank Bristol-Myers, France for a generous supply of (4S)-t-butoxycarbonyl-(3S)-[(1R)-hydroxyethyl-1-8. (4-methoxyphenyl) azetidinone which was converted into 4 by standard procedures.
- 9.
- Nahm, S.; Weinreb, S. M. Tetrahedron Lett., 1981, 22, 3815. a. Cherest, M.; Felkin, H.; Prudent, N. Tetrahedron Lett., 1968, 18, 2199. b. Anh, N. T.; Top. Curr. 10. Chem., 1980, 88, 145.
- Schmidt, H. M.; Arens, J. F. Recueil, 1967, 86, 1138. 11.
- McComsey, D. F.; Reitz, A.B.; Maryanoff, C. A.; Maryanoff, B. Synthetic Commun., 1986, 16, 1535. 12.
- See Saha, M.; Muchmore, S.; van der Helm, D.; Nicholas, K. M. J. Org. Chem., 1986, 51, 1960 and 13.
- references contained therein for applications of the Nicholas reaction in synthesis.
- 14.
- Fliri, H.; Mak, C. P. J. Org. Chem., 1985, 50, 3438. Tsuji, J.; Takahashi, M.; Takhashi, T. Tetrahedron Lett., 1980, 21, 849. 15.
- Shibasaki, M.; Nishida, A.; Ikegami, S. Tetrahedron Lett., 1982, 23, 2875. 16.
- Two other uses of hexacarbonyldicobalt stabilized propargyl cations in stereochemical control have appeared a. Nicholas, K. M.; Siegel, J. J. Am. Chem. Soc., 1985, 107, 4999. b. Schreiber, S. L.; Sammakia, T.; 17. Crowe, W. E. J. Am. Chem. Soc., 1986, 108, 3128.

(Received in USA 23 January 1987)